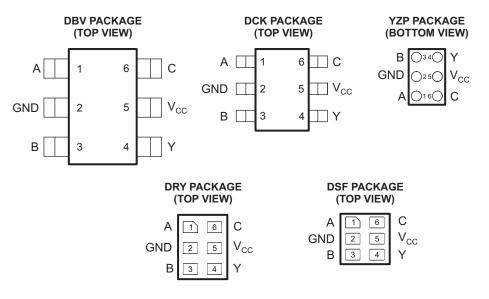


Single 3-Input Positive-OR Gate

Check for Samples: SN74LVC1G332

FEATURES


- Available in the Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V_{CC}
- Max t_{pd} of 4.5 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION

The SN74LVC1G332 device performs the Boolean function in Y = A + B + C or $Y = \overline{A \bullet B} \bullet \overline{C}$ positive logic.

NanoStar[™] and NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

See mechanical drawings for dimensions.

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Function Table

	INPUTS		OUTPUT
Α	В	С	Υ
Н	Х	Х	Н
X	Н	X	Н
X	X	Н	Н
L	L	L	L

Logic Diagram (Positive Logic)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the h	igh-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the h	igh or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
lok	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
		DBV package		165	
θ_{JA}	Package thermal impedance (4)	DCK package		259	°C/W
		YEP or YZP package		123	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Submit Documentation Feedback

Copyright © 2003–2013, Texas Instruments Incorporated

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions(1)

$\begin{array}{c} V_{CC} \\ V_{CC$	UNIT
$V_{\text{IH}} \text{High-level input voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$\begin{array}{c} V_{IH} \\ V_{IH$	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$V_{\text{IL}} \text{Low-level input voltage} \begin{cases} V_{\text{CC}} = 1.65 \text{V to } 1.95 \text{V} & 0.35 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V to } 2.7 \text{V} & 0.7 \text{y}_{\text{CC}} \\ V_{\text{CC}} = 3 \text{V to } 3.6 \text{V} & 0.8 \text{y}_{\text{CC}} \\ V_{\text{CC}} = 4.5 \text{V to } 5.5 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 4.5 \text{V to } 5.5 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\ V_{\text{CC}} = 2.3 \text{V} & 0.3 \text{x } \text{V}_{\text{CC}} \\$	V
$V_{\text{IL}} \text{Low-level input voltage} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	İ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	İ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
$\begin{array}{c} I_{OH} & \mbox{High-level output current} \\ \hline \\ V_{CC} = 3 \ V \\ \hline \\ V_{CC} = 4.5 \ V \\ \hline \\ V_{CC} = 1.65 \ V \\ \hline \\ V_{CC} = 2.3 \ V \\ \hline \\ V_{CC} = 2.3 \ V \\ \hline \\ V_{CC} = 3 \ V \\ \hline \\ V_{CC} = 4.5 \ V \\ \hline \\ \end{array}$	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	İ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ī
$\begin{array}{c c} I_{OL} & \text{Low-level output current} \\ \hline V_{CC} = 3 \ V \\ \hline V_{CC} = 4.5 \ V \\ \hline \end{array}$	<u> </u>
$V_{CC} = 3 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ 24	İ
V _{CC} = 4.5 V 32	mA
	İ
$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$ 20	İ
,	1
$\Delta t/\Delta v$ Input transition rise or fall rate $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	ns/V
$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ 10	Í
T _A Operating free-air temperature –40 125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Product Folder Links: SN74LVC1G332

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

D4D41	IETED.	TEST SOMBITIONS	.,	-40°	°C to 85°C		-40°0	C to 125°C		
PARAM	IETEK	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	UNIT
		I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} - 0.1			V _{CC} - 0.1			
		I _{OH} = -4 mA	1.65 V	1.2			1.2			
V _{OH}		$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			1.9			V
0.1		I _{OH} = -16 mA	3 V	2.4			2.4			
		I _{OH} = -24 mA	3 V	2.3			2.3			
		$I_{OH} = -32 \text{ mA}$	4.5 V	3.8			3.8			
		I _{OL} = 100 μA	1.65 V to 5.5 V			0.1			0.1	
		I _{OL} = 4 mA	1.65 V			0.45			0.45	
V _{OL}		I _{OL} = 8 mA	2.3 V			0.3			0.3	V
		I _{OL} = 16 mA	3 V			0.4			0.4	
		I _{OL} = 24 mA	3 V			0.55			0.55	
		I _{OL} = 32 mA	4.5 V			0.55			0.55	
I	All inputs	V _I = 5.5 V or GND	0 to 5.5 V			±5			±5	μA
I _{off}		V_I or $V_O = 5.5 \text{ V}$	0			±10			±10	μA
Icc		V _I = 5.5 V or GND, I _O = 0	1.65 V to 5.5 V			10			10	μA
ΔI _{CC}		One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 5.5 V			500			500	μA
Ci		V _I = V _{CC} or GND	3.3 V		3.5					pF

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

	FROM (INPUT)	TO (OUTPUT)		SN74LVC1G332 −40°C to 85°C							
PARAMETER				V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Υ	2.4	17	1.4	6	1.2	4.5	0.8	3	ns

Switching Characteristics

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 2)

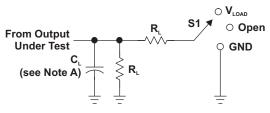
							C1G332 :o 85°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Υ	2.8	17.2	1.5	6.2	1.4	4.8	1	3.5	ns

Switching Characteristics

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 2)

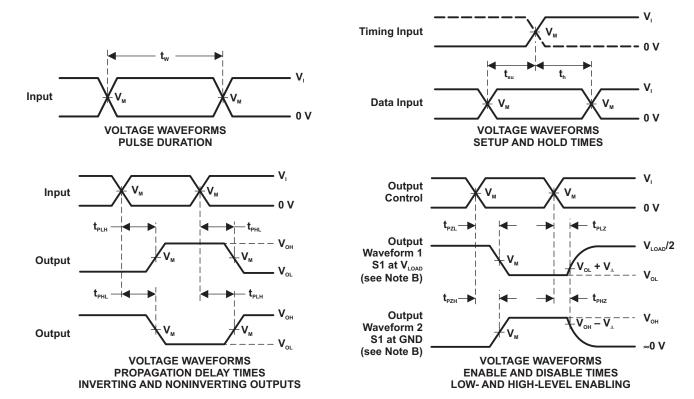
							C1G332 o 125°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = ± 0.2		V _{CC} = ± 0.		V _{CC} =		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A, B, or C	Υ	2.8	20.0	1.5	7.8	1.4	6.2	1.0	4.5	ns

Operating Characteristics


 $T_A = 25$ °C

PARAMETER		TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT	
		CONDITIONS	TYP	TYP	TYP	TYP	0	
C_{pd}	Power dissipation capacitance	f = 10 MHz	18	19	20	23	pF	

Product Folder Links: SN74LVC1G332


Parameter Measurement Information

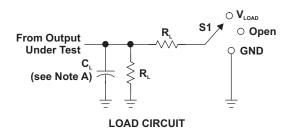
TEST	S1
t _{PLH} /t _{PHL}	Open
$t_{_{\mathrm{PLZ}}}/t_{_{\mathrm{PZL}}}$	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

		INPUTS		.,	.,		-	.,	
V _{cc}		V,	t,/t,	V _M	V _{LOAD}	C _L	R _L	V _Δ	
	1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V	
	$2.5~V~\pm~0.2~V$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V	
	3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 M Ω	0.3 V	
	5 V \pm 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.3 V	

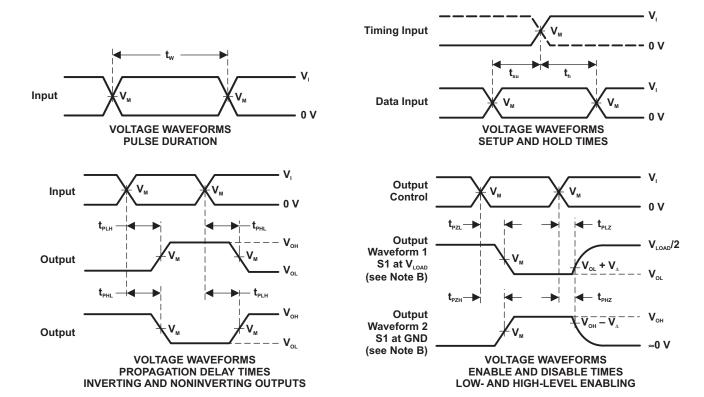
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_o = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.


Figure 1. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2003–2013, Texas Instruments Incorporated



Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
$t_{_{\mathrm{PLZ}}}/t_{_{\mathrm{PZL}}}$	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

.,	INI	PUTS	.,,	v		-	.,
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _∟	$R_{\scriptscriptstyle L}$	V _A
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
2.5 V ± 0.2 V	V_{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
3.3 V ± 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V ± 0.5 V	V_{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_o = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\mbox{\tiny PLZ}}$ and $\dot{t}_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}.$
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

SCES489E - SEPTEMBER 2003 - REVISED DECEMBER 2013

REVISION HISTORY

CI	hanges from Revision D (September 2006) to Revision E	Page
•	Updated document to new TI data sheet format.	1
•	Updated Features.	1
•	Removed Ordering Information table.	1
•	Added ESD warning.	2
•	Updated operating temperature range	3

www.ti.com

30-Jun-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
74LVC1G332DBVRG4	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C2CF
74LVC1G332DBVRG4.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C2CF
74LVC1G332DCKRE4	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZF
SN74LVC1G332DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C2CF, C2CK, C2CR)
SN74LVC1G332DBVR.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C2CF, C2CK, C2CR)
SN74LVC1G332DBVRG4.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
SN74LVC1G332DCKR	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(CZF, CZJ, CZK, CZ R)
SN74LVC1G332DCKR.B	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(CZF, CZJ, CZK, CZ R)
SN74LVC1G332DCKRG4	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZF
SN74LVC1G332DCKRG4.B	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZF
SN74LVC1G332DRLR	Active	Production	SOT-5X3 (DRL) 6	4000 LARGE T&R	Yes	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(1K1, CZ7, CZR)
SN74LVC1G332DRLR.B	Active	Production	SOT-5X3 (DRL) 6	4000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(1K1, CZ7, CZR)
SN74LVC1G332DRLRG4	Active	Production	SOT-5X3 (DRL) 6	4000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1K1
SN74LVC1G332DRLRG4.B	Active	Production	SOT-5X3 (DRL) 6	4000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1K1
SN74LVC1G332DRY2	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DRY2.B	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DRYR	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DRYR.B	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DRYRG4	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DRYRG4.B	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DSF2	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DSF2.B	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DSFR	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DSFR.B	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DSFRG4	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZ
SN74LVC1G332DSFRG4.B	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CZ

30-Jun-2025

www.ti.com

	Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
L							(4)	(5)		

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	(3)	Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
SN74LVC1G332YZPR	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	CZN
SN74LVC1G332YZPR.B	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	CZN

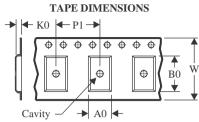
⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

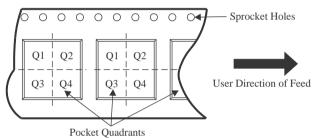
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

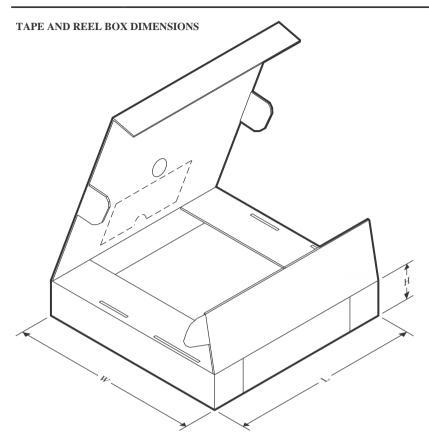

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

www.ti.com 18-Jun-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

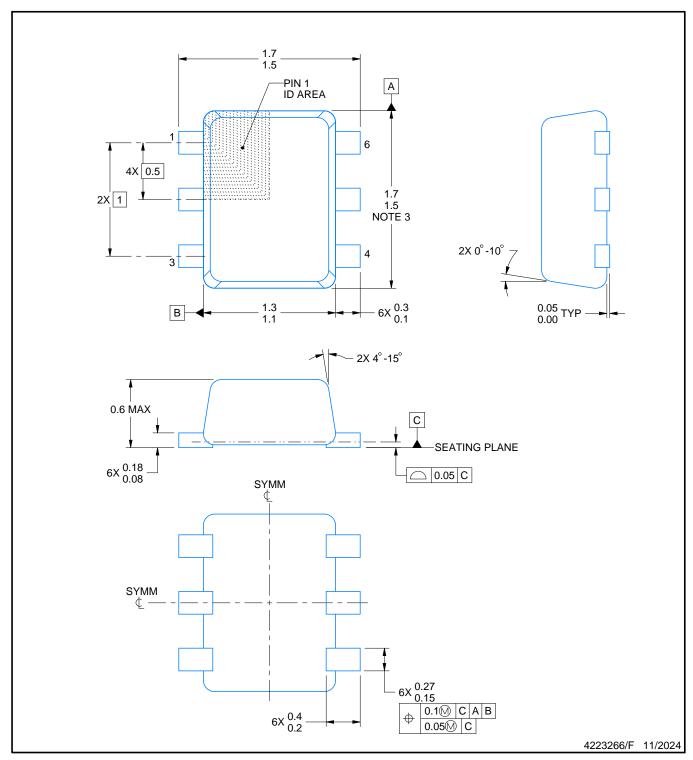
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74LVC1G332DBVRG4	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G332DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G332DCKR	SC70	DCK	6	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
SN74LVC1G332DCKRG4	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G332DRLR	SOT-5X3	DRL	6	4000	180.0	8.4	2.0	1.8	0.75	4.0	8.0	Q3
SN74LVC1G332DRLRG4	SOT-5X3	DRL	6	4000	180.0	8.4	2.0	1.8	0.75	4.0	8.0	Q3
SN74LVC1G332DRY2	SON	DRY	6	5000	180.0	9.5	1.6	1.15	0.75	4.0	8.0	Q3
SN74LVC1G332DRY2	SON	DRY	6	5000	180.0	8.4	1.65	1.2	0.7	4.0	8.0	Q3
SN74LVC1G332DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74LVC1G332DRYRG4	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74LVC1G332DSF2	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q3
SN74LVC1G332DSF2	SON	DSF	6	5000	180.0	8.4	1.16	1.16	0.63	4.0	8.0	Q3
SN74LVC1G332DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G332DSFRG4	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G332YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

www.ti.com 18-Jun-2025

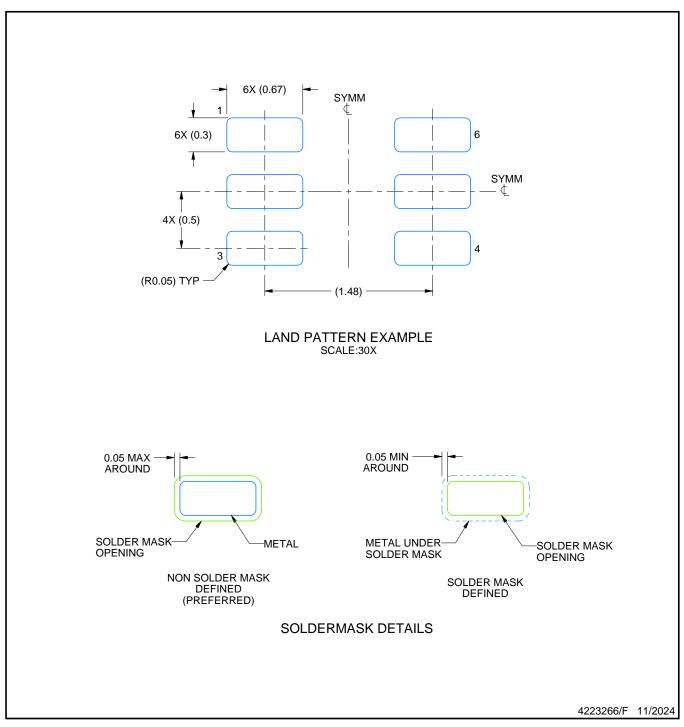


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74LVC1G332DBVRG4	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC1G332DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC1G332DCKR	SC70	DCK	6	3000	210.0	185.0	35.0
SN74LVC1G332DCKRG4	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC1G332DRLR	SOT-5X3	DRL	6	4000	210.0	185.0	35.0
SN74LVC1G332DRLRG4	SOT-5X3	DRL	6	4000	210.0	185.0	35.0
SN74LVC1G332DRY2	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G332DRY2	SON	DRY	6	5000	202.0	201.0	28.0
SN74LVC1G332DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G332DRYRG4	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G332DSF2	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G332DSF2	SON	DSF	6	5000	202.0	201.0	28.0
SN74LVC1G332DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G332DSFRG4	SON	DSF	6	5000	184.0	184.0	19.0
SN74LVC1G332YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

PLASTIC SMALL OUTLINE

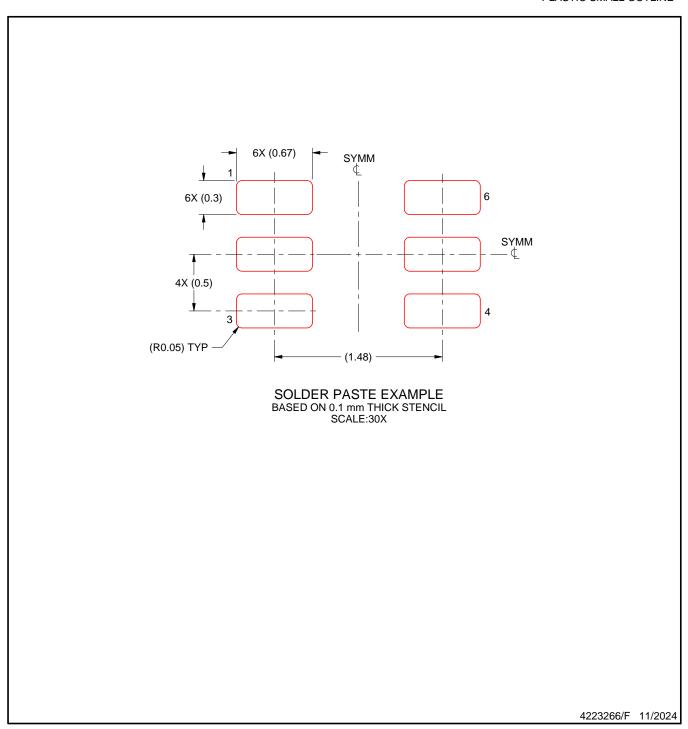
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-293 Variation UAAD

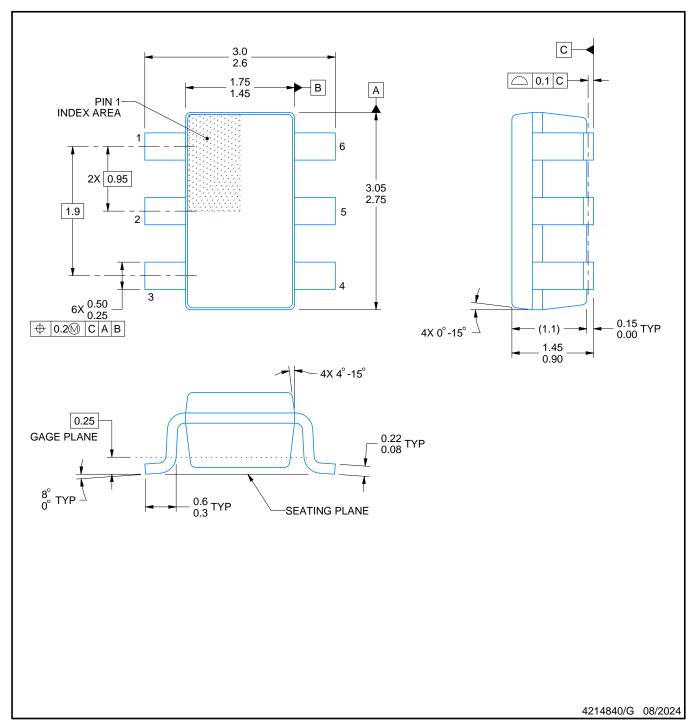
PLASTIC SMALL OUTLINE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.

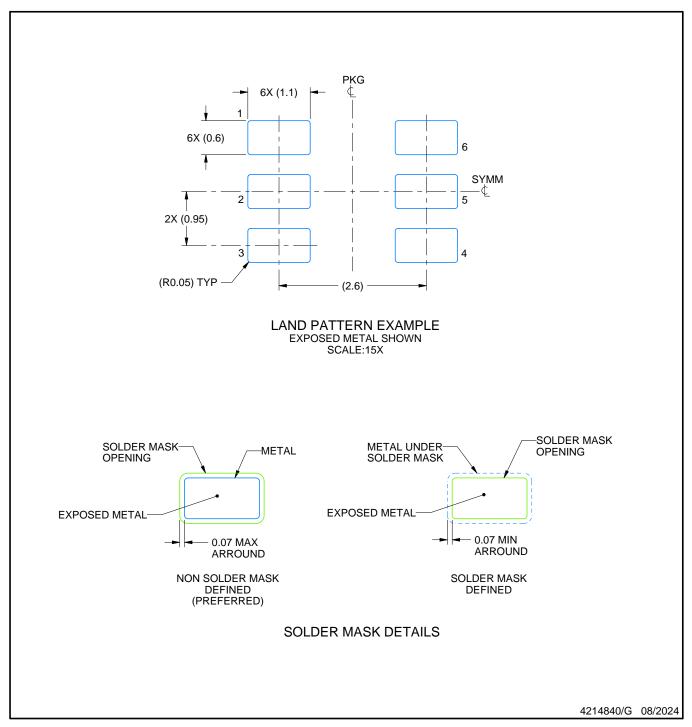
PLASTIC SMALL OUTLINE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

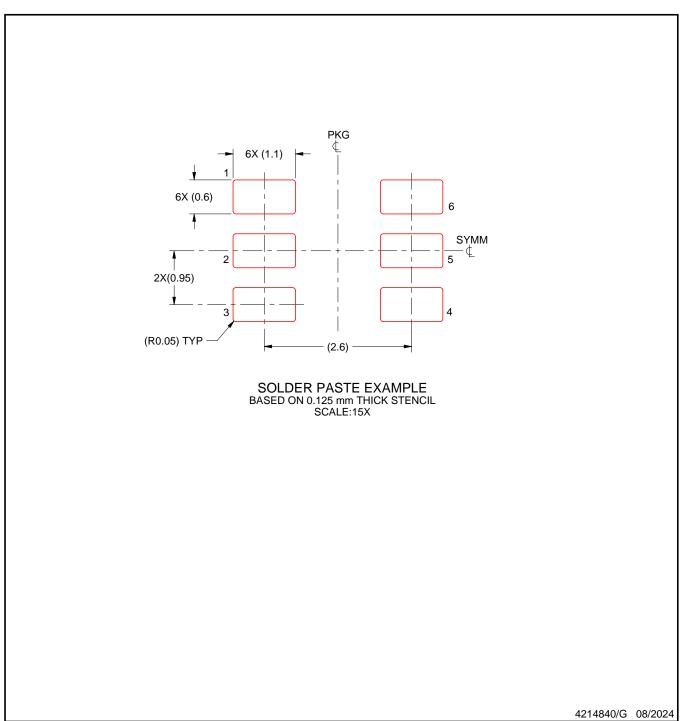
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

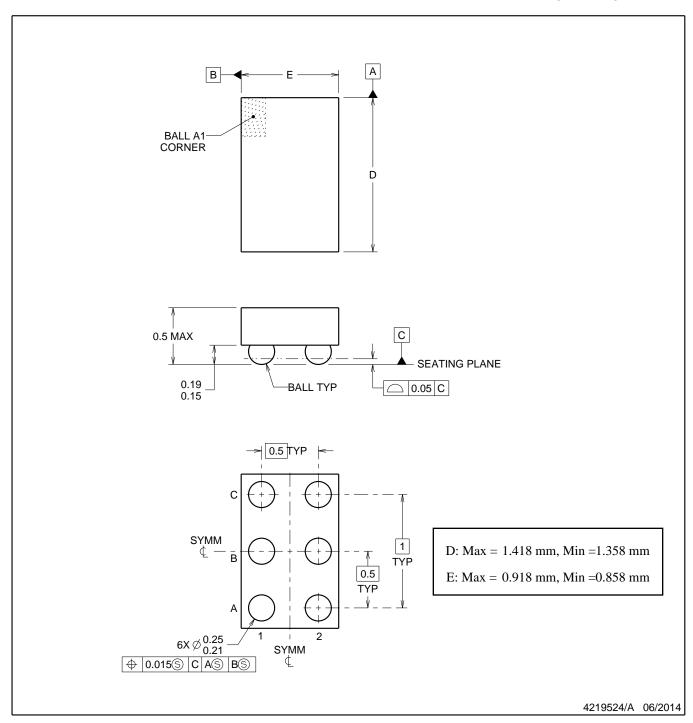
- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

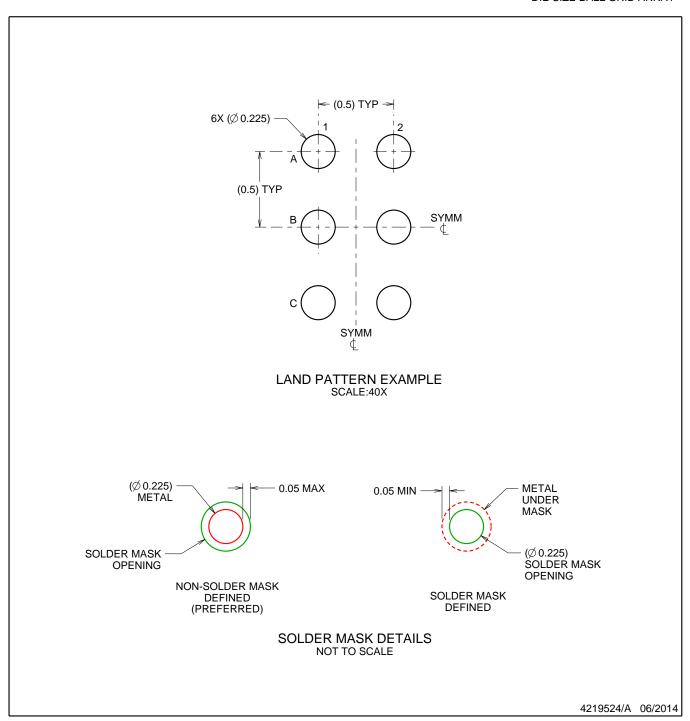
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DIE SIZE BALL GRID ARRAY

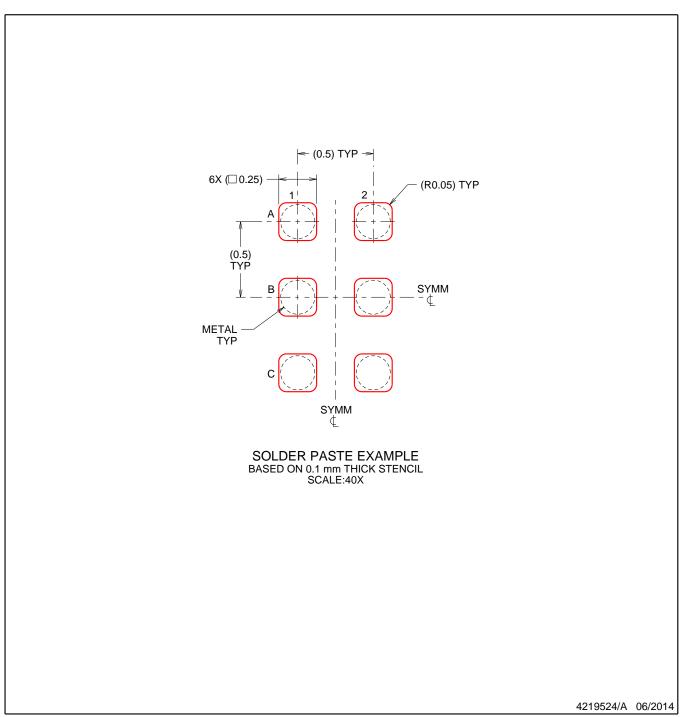
NOTES:


NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

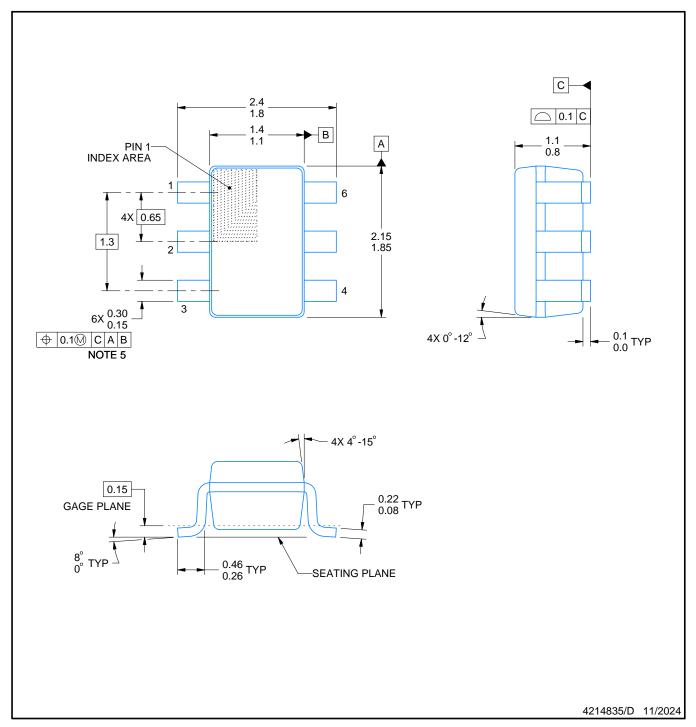
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
 For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

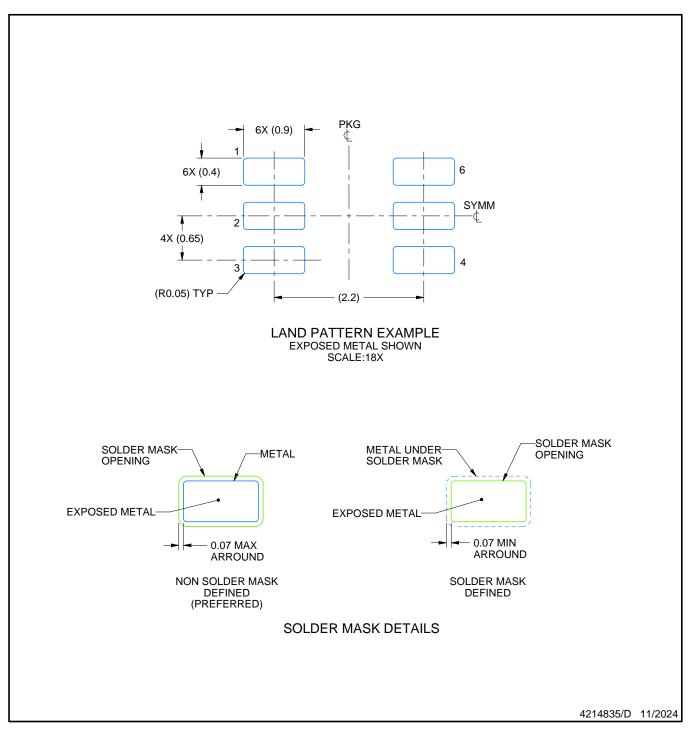
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

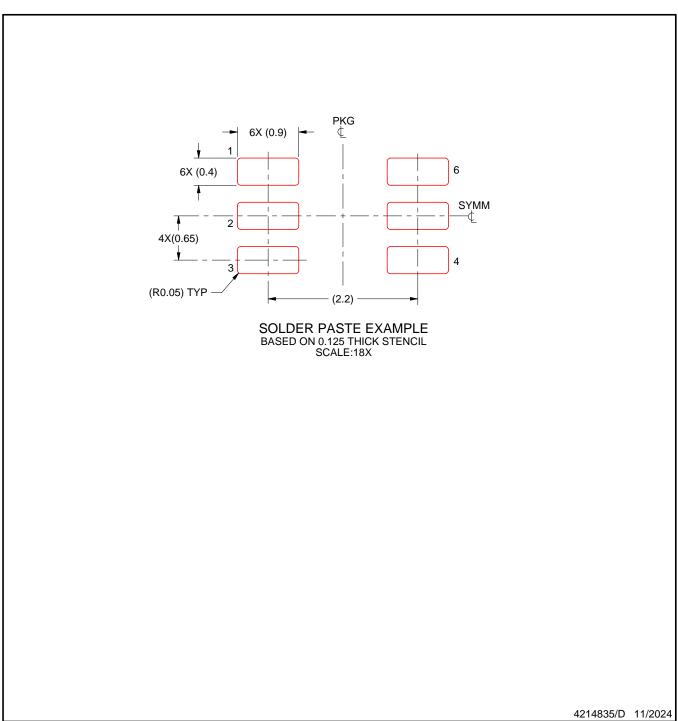
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

 4. Falls within JEDEC MO-203 variation AB.



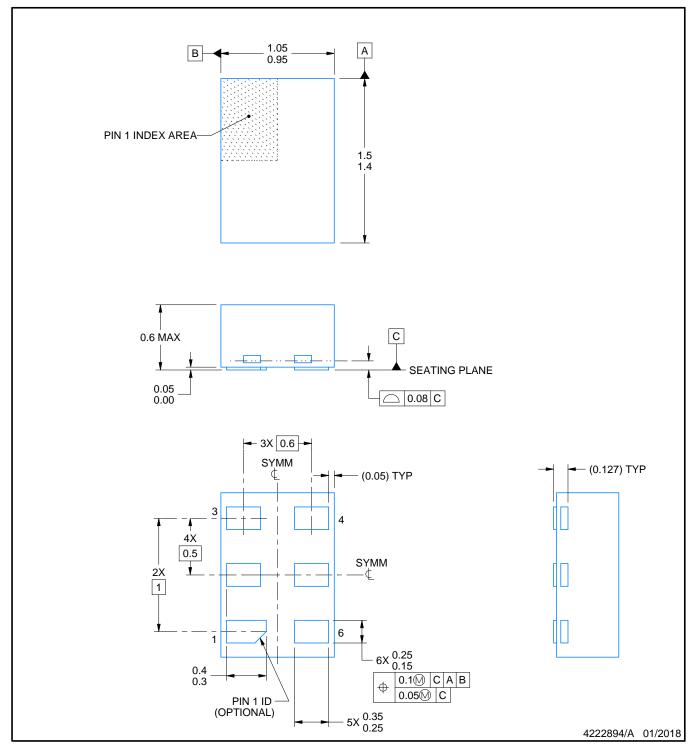
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

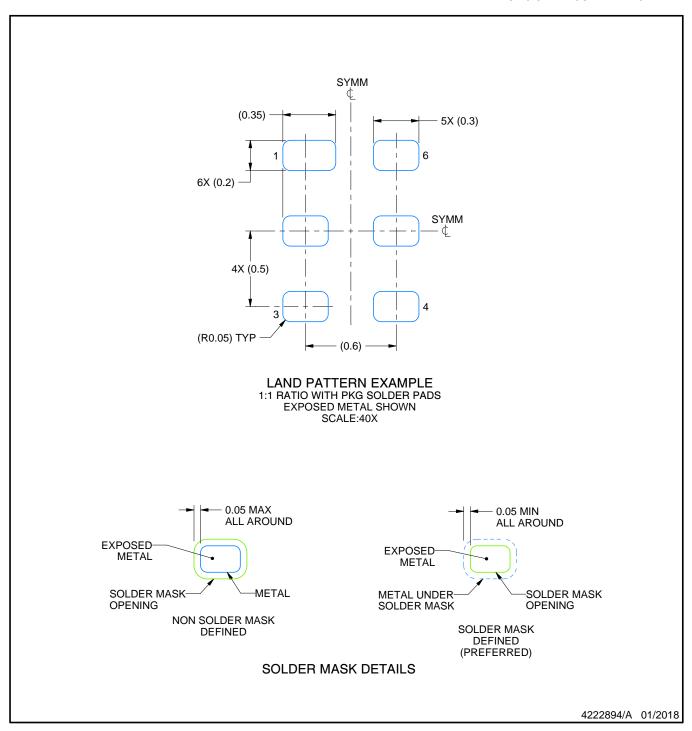
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.



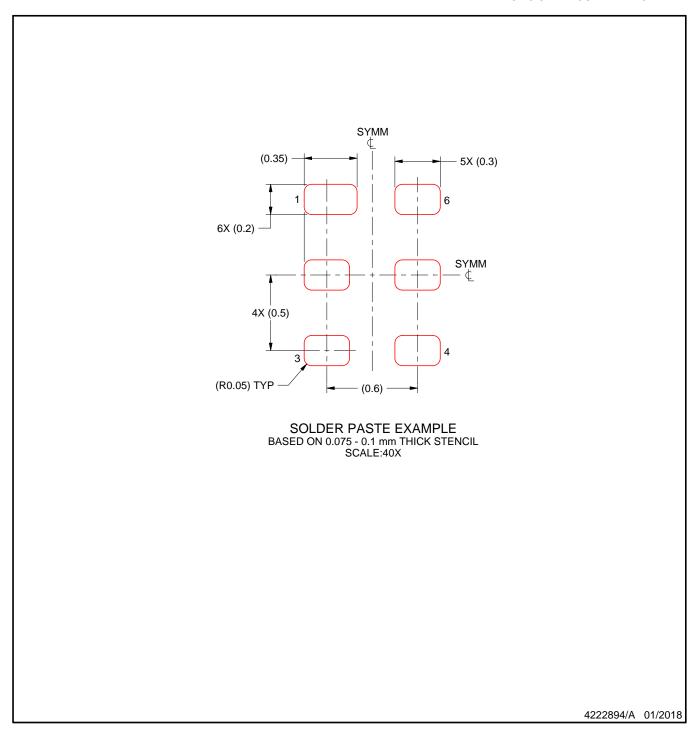
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



NOTES:

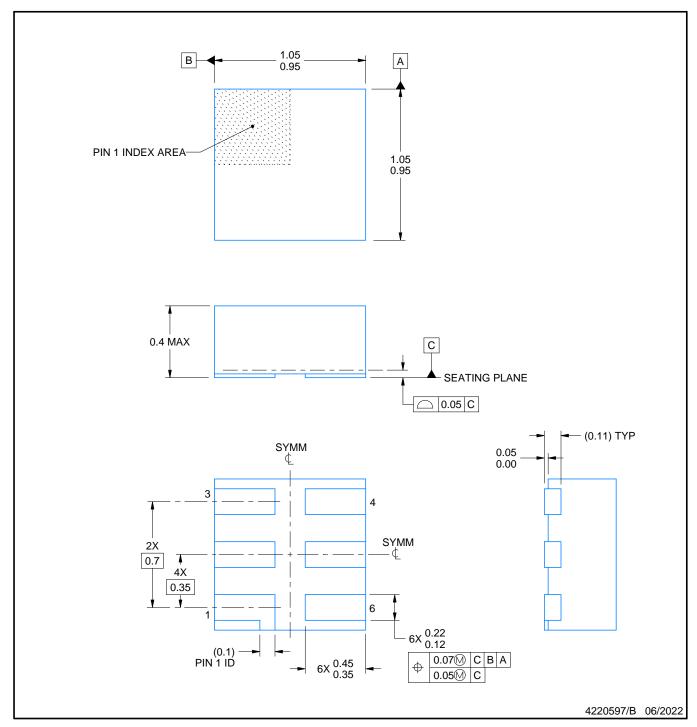
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.



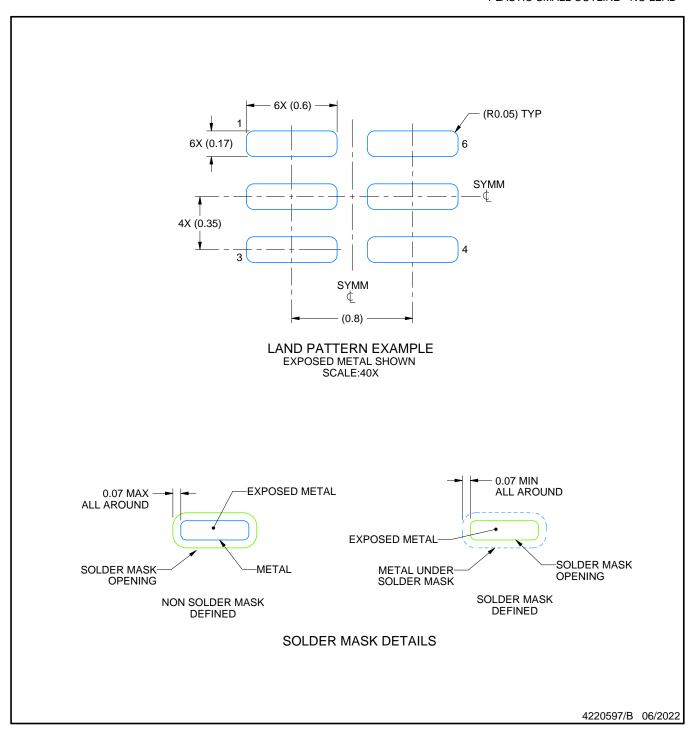
NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).



NOTES: (continued)

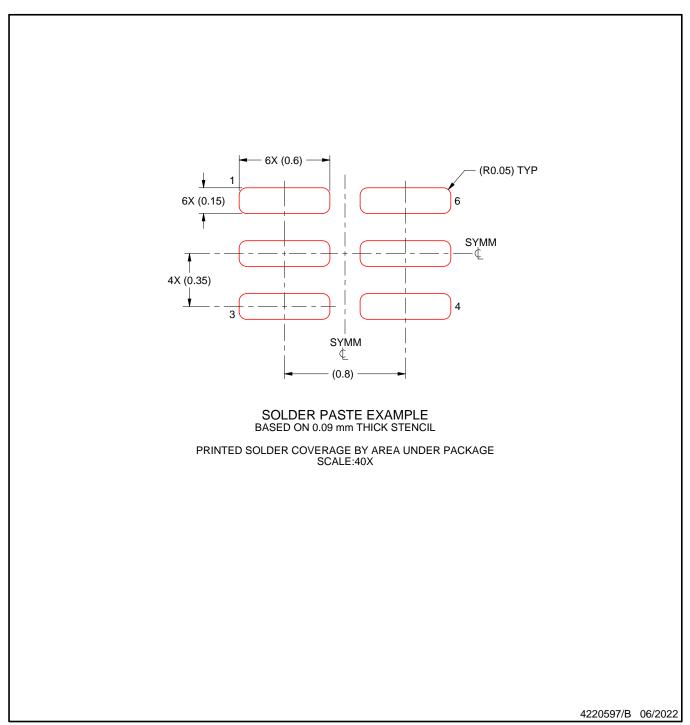
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC registration MO-287, variation X2AAF.



NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated